Optima® Ceiling Panels
High Performance Fiberglass

Committed to Sustainability.
Armstrong is committed to delivering solutions that reduce the environmental impact of the buildings you create… from product design and raw material selection, to how our products are produced and delivered.

Now we provide Environmental Product Declarations (EPD’s) to document the sustainability of our products. Inside this ICC-ES certified ISO compliant EPD you will find:

- Performance features like acoustics, light reflectance, and durability
- Product application and use
- Product ingredients and their sources
- Information on how a ceiling system is produced
- Life Cycle Assessment (LCA) results including global warming potential and primary energy usage
- Total impacts over the life cycle of the product

Optima delivers a superior combination of performance attributes – superior sound absorption, clean aesthetics, and a reduced environmental footprint – making it a great product for commercial applications.

<table>
<thead>
<tr>
<th>LCA IMPACT MEASURES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy (MJ)</td>
<td>10.3</td>
</tr>
<tr>
<td>Global Warming Potential (kg CO₂ equivalent)</td>
<td>0.59</td>
</tr>
<tr>
<td>Ozone Depletion (kg CFC-11 equivalent)</td>
<td>2.60E-08</td>
</tr>
<tr>
<td>Acidification Potential (H⁺ moles equivalent)</td>
<td>0.214</td>
</tr>
<tr>
<td>Eutrophication Potential (kg N₂ equivalent)</td>
<td>2.42E-04</td>
</tr>
<tr>
<td>Smog Photochemical Oxidant Creation Potential (kg O₃-Equiv.)</td>
<td>0.037</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE ATTRIBUTES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics NRC (Absorption)</td>
<td>0.90-0.95</td>
</tr>
<tr>
<td>Acoustics AC (Open Plan)</td>
<td>180-200</td>
</tr>
<tr>
<td>Light Reflectance</td>
<td>0.90</td>
</tr>
<tr>
<td>Sag/Mold Warranty</td>
<td>30 Years</td>
</tr>
<tr>
<td>Durability: Washable, Impact-resistant, Scratch-resistant, Soil-resistant</td>
<td></td>
</tr>
</tbody>
</table>

Ceiling Ingredients: Fiberglass, Scrim, Coatings

Visit armstrong.com/epd for further information and to watch our video.
This document is a Type III environmental product declaration by Armstrong World Industries that is certified by ICC-ES as conforming to the requirements of ISO 14025. ICC-ES has assessed that the Life Cycle Assessment (LCA) information fulfills the requirements of ISO 14040 in accordance with the instructions listed in the product category rules cited below. The intent of this document is to further the development of environmentally compatible and sustainable construction methods by providing comprehensive environmental information related to potential impacts in accordance with international standards.

<table>
<thead>
<tr>
<th>Declaration Number:</th>
<th>EPD-0004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration Holder:</td>
<td>Armstrong Commercial Ceiling Systems</td>
</tr>
</tbody>
</table>

**Declared Product**
Armstrong® Optima Ceiling Panels feature superior acoustics with a fiberglass substrate, fine-textured, non-directional DuraBrite® surface for increased durability, and superior light reflectance.

**Declaration Type**
Cradle-to-Grave (with end of life information added). Intended for Business-to-Business (B-to-B) audiences.

**Applicable Countries**
U.S. and Canada, based upon the use of U.S.-specific standards, data, and declared impact measures. Otherwise, calculations are the same as the Institut Baven und Umwelt (IBU) Product Category Rules (PCR) “Mineralplatten fur adgehangteDeckensysteme,” 2009-06.

**Product Application**
Provides outstanding acoustical performance for commercial spaces:
- Open plan offices
- Computer rooms
- Corridors (walls-to-deck)
- Auditoriums
- Waiting rooms/nurses stations – assists in addressing HIPAA and FGI acoustical requirements
- Areas with indirect lighting systems
- Classrooms (walls-to-deck)

**Content of the Declaration**
This declaration is complete and contains in its full form:
- Product Definition
- Material Content
- Production of the Ceiling System
- Installation of Ceiling Systems
- Use Stage
- Extraordinary Effects
- End of Life Stage
- Life Cycle Assessment
- Additional Information, Evidence, Test Certificates
- PCR Documentation and Verification
- References

**PCR Development**
☐ New or Revised  ☑ Existing

**PCR Reference**
PCR Ceiling Panels – Ceiling panels for suspended ceiling systems
Version: October 2010 (U.S.) www.bau-umwelt.com

**EPD Date of Issue:** June 14, 2012  **EPD Period of Validity:** June 1, 2015

**Verification and Authorization of the Declaration**
This declaration and the rules on which this EPD is based have been examined by an independent verifier in accordance with ISO 14025

X  Robert Brooks, Director of Environmental Programs, ICC-ES  Date  June 14, 2012
X  Francois Charron-Doucet, Verifier - Quantis  Date  June 14, 2012

ICC-ES certification of an Environmental Product Declaration (EPD) is not the equivalent of an ICC-ES Evaluation Report, Verification of Attributes Report, or a listing for code compliance. ICC-ES certification of an EPD is limited to the requirements for Type III environmental declarations in accordance with ISO 14025 and does not apply to product performance attributes which demonstrate compliance to codes. ICC-ES certification of this EPD is not to be construed as representing aesthetics or any other attributes not specifically addressed, nor should it be construed as an ICC-ES endorsement of the subject of the EPD or a recommendation for its use. There is no warranty by ICC-ES, express or implied, as to any finding or other matter in the EPD, or as to any product covered by the EPD. The EPD holder is liable for the information and evidence on which the EPD is based.

ICC-ES Environmental Programs
www.icc-es.org/ep

Copyright © 2012
Summary LCA Results

Product Components Related to Life Cycle Assessment

Armstrong Ceiling Systems are comprised of two components – ceiling panels and a metal suspension system. Table 1 discloses the environmental impact measures for Optima ceiling panels. The ceiling system LCA results are detailed in Section 9.

Scope and Boundaries of the Life Cycle Assessment

The Life Cycle Assessment (LCA) was performed according to ISO 14040 and follows the PCR instructions. The cradle-to-grave LCA encompasses raw material production; transport of raw materials to production facility; manufacturing of ceiling panels; packaging; transportation to job site; use phase; and end of life including disposal or recycling. Detailed information regarding the LCA is found in Section 9.

Life Cycle Assessment Summary

Declared Unit: 1 ft² of ceiling panels¹ for use over 50 years, impacts based on U.S. EPA TRACI 2.0 Impact Factors

Table 1: Life Cycle Assessment of Optima Ceiling Panels⁴

<table>
<thead>
<tr>
<th>IMPACT MEASURE</th>
<th>TOTAL¹</th>
<th>PRODUCTION</th>
<th>USE PHASE</th>
<th>END OF LIFE</th>
<th>REDUCTION²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy (MJ)</td>
<td>10.3</td>
<td>10.0</td>
<td>0.2</td>
<td>0.2</td>
<td>-5%</td>
</tr>
<tr>
<td>Global Warming Potential (kg CO₂ equivalent)</td>
<td>0.59</td>
<td>0.56</td>
<td>0.01</td>
<td>0.02</td>
<td>-6%</td>
</tr>
<tr>
<td>Ozone Depletion (kg CFC-11 equivalent)</td>
<td>2.60E-08</td>
<td>2.60E-08</td>
<td>2.56E-16</td>
<td>4.30E-11</td>
<td>-14%</td>
</tr>
<tr>
<td>Acidification Potential (H⁺ moles equivalent)</td>
<td>0.214</td>
<td>0.204</td>
<td>0.004</td>
<td>0.005</td>
<td>-14%</td>
</tr>
<tr>
<td>Eutrophication Potential (kg PO₄ equivalent)</td>
<td>2.42E-04</td>
<td>2.31E-04</td>
<td>4.80E-06</td>
<td>6.36E-06</td>
<td>-16%</td>
</tr>
<tr>
<td>Smog – Photochemical Oxidant Creation Potential (kg O₃-Equiv.)</td>
<td>0.037</td>
<td>0.032</td>
<td>0.002</td>
<td>0.003</td>
<td>-27%</td>
</tr>
</tbody>
</table>

¹ For declaration of impacts due to the inclusion of the suspension system, see page 13.
² Percent change (of Total) based on LCA comparison between 2007 and 2011 (negative indicates improvement over time), see Figure 11 on page 15.
³ Additional impact measures are included in Section 10.
⁴ Data is from Optima 1" Tegular items. Items with a square edge, and items with a 3/4" thickness resulted in lower LCA impacts.

Additional Information

This declaration contains additional information, as listed below, that is outside the scope of the LCA. This additional information, provided by Armstrong, has not been evaluated by ICC-ES, but is considered useful for the purpose of comparing this EPD to other EPDs developed from the same PCR. Guidance is recommended in comparing performance data and LCA information for products that perform the same in the areas of Acoustics, Fire and Sag Resistance, Light Reflectance, Seismic Performance, and End of Life Recyclability. Please refer to page 4 for a summary of performance attributes by item number and note the website references listed below for additional information.

- Ceiling panel acoustical performance: armstrong.com/acoustics
- Ceiling panel fire resistance: armstrong.com/fireresistance
- Ceiling panel sag resistance: armstrong.com/nosag
- Ceiling panel light reflectance: armstrong.com/lightreflectance
- Suspension system seismic performance (verified by ICC-ES ESR-1308): armstrong.com/seismic
- Health, safety, and installation information
Detailed LCA Results

1.0 Product Definition

1.1 Product Definition and Performance

Armstrong® Optima Ceiling Panels are fiberglass acoustical ceiling panels, featuring a fine-textured, non-directional DuraBrite® surface for increased durability and superior light reflectance. Optima ceiling panels are manufactured by Armstrong World Industries in Hilliard, Ohio (43026).

2.0 Product Application


3.0 Performance Attributes

There are different levels of performance associated with fiberglass ceiling panels. Performance information is included in this EPD to provide a total understanding of this product and its performance attributes.

3.1 Performance Selection

Table 2: Performance of Optima Ceiling Panels

<table>
<thead>
<tr>
<th>ITEMS INCLUDED IN THIS EPD</th>
<th>ATTRIBUTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optima Square Tegular Panels for 15/16” Suspension System</td>
<td>NRC 0.90-0.95, Washable</td>
</tr>
<tr>
<td>1402, 1406, 3214, 3215, 3250, 3256PB, 3252, 3252PB, 3255, 3255PB, 3258, 3278, 3281, 3282, 3286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC 180-200, Impact-resistant</td>
</tr>
<tr>
<td></td>
<td>Fire Rating: Class A, Scratch-resistant</td>
</tr>
<tr>
<td></td>
<td>Light Reflectance 0.90, Soil-resistant</td>
</tr>
<tr>
<td></td>
<td>Sag-resistant (HumiGuard® Plus), Recyclable</td>
</tr>
<tr>
<td></td>
<td>Anti-Microbial (BioBlock® Plus)</td>
</tr>
<tr>
<td></td>
<td>In addition to the attributes listed above, Health Zone™ items are: Water-repellent, Scrubbable</td>
</tr>
</tbody>
</table>

Optima Square Tegular Panels for 9/16” Suspension System

| 1401, 1403, 1405, 1407, 1409, 1412, 1413, 1414, 1415, 1417, 3216, 3217, 3249, 3251, 3251PB, 3256, 3256PB, 3257, 3257PB, 3259, 3261, 3262, 3265, 3266, 3268, 3269, 3276, 3277, 3279, 3280, 3283, 3284, 3285, 3287, 3288, 3289 |
| | NRC 0.90-0.95, Washable |
| | AC 180-200, Impact-resistant |
| | Fire Rating: Class A, Scratch-resistant |
| | Light Reflectance 0.90, Soil-resistant |
| | Sag-resistant (HumiGuard® Plus), Recyclable |
| | Anti-Microbial (BioBlock® Plus) |
| | In addition to the attributes listed above, Health Zone™ items are: Water-repellent, Scrubbable |

Optima Square Lay-in Panels for 15/16” Suspension System

| 1400, 1404, 3114, 3114, 3150, 3151, 3152, 3152PB, 3153, 3153PB, 3154, 3156, 3157, 3158, 3160, 3160PB, 3161, 3162, 3153PB, 3164 |
| | NRC 0.90-0.95, Washable |
| | AC 180-200, Impact-resistant |
| | Fire Rating: Class A, Scratch-resistant |
| | Light Reflectance 0.90, Soil-resistant |
| | Sag-resistant (HumiGuard® Plus), Recyclable |
| | Anti-Microbial (BioBlock® Plus) |
| | In addition to the attributes listed above, Health Zone™ items are: Water-repellent, Scrubbable |

1 Data shows a range of attributes for the Optima product family.
2 Health Zone
3.2 Key Selection Attributes

- Outstanding acoustical performance for open plan areas, both Articulation Class (180-200) and NRC (0.90-0.95)
- Smooth, clean, durable finish – Washable, Impact-resistant, Scratch-resistant, Soil-resistant
- Energy-saving high light-reflective finish
- Non-directional visual reduces installation time and scrap
- Compatible with the TechZone™ Ceiling Systems
- Smaller size panels available (1 carton min. order). Info: armstrong.com/specials
- 30-Year Limited System Warranty against visible sag, mold/mildew, and bacterial growth
- High recycled content – see Green Genie™ for item specific data at www.armstrong.com/greengenie

4.0 Material Content

4.1 Definitions

- **Fiberglass Core** – Consists of glass fibers and an organic resin
- **Scrim** – A non-woven facing attached to the mineral fiber core with a latex adhesive
- **Face Coating** – Durable, highly light-reflective finish paint coating applied to the scrim
- **Hot Dipped Galvanized Steel** – Steel with zinc corrosion protection
- **Painted Finish** – Painted steel capping

---

**Figure 1. Composition of an Optima Ceiling Panel**

**Figure 2. Composition of Prelude XL Suspension Systems**
4.0 Material Content (continued)

Table 3: Material Content of Optima Ceiling Panels

<table>
<thead>
<tr>
<th>FIBERGLASS CORE</th>
<th>FUNCTION</th>
<th>QUANTITY (PERCENT BY WEIGHT)</th>
<th>RECYCLED MINERAL RESOURCE</th>
<th>MINERAL RESOURCE</th>
<th>NON-RENEWABLE</th>
<th>RENEWABLE</th>
<th>ABUNDANT</th>
<th>RECYCLED MATERIAL</th>
<th>ORIGIN</th>
<th>TRANSPORTATION MODE</th>
<th>TRANSPORTATION MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Fibers</td>
<td>Acoustics</td>
<td>60-75%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Global</td>
<td>Truck/Rail</td>
<td>750-1400</td>
</tr>
<tr>
<td>Organic Binder</td>
<td>Binder</td>
<td>5-15%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Global</td>
<td>Truck/Ship</td>
<td>750-1400</td>
</tr>
<tr>
<td>Coating</td>
<td>Finish</td>
<td>15-25%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>U.S.</td>
<td>Truck/Rail</td>
<td>400-4000</td>
</tr>
<tr>
<td>Scrim</td>
<td>Finish</td>
<td>1-5%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Global</td>
<td>Truck/Ship</td>
<td>6000-7000</td>
</tr>
<tr>
<td>Adhesive</td>
<td>Finish</td>
<td>1-5%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>U.S.</td>
<td>Truck</td>
<td>&lt;500</td>
</tr>
</tbody>
</table>

4.2 Production of Ceiling Panel

Optima® Ceiling Panels
High Performance Fiberglass
Prelude® XL®, Suprafine® XL, Silhouette® XL, Interlude® XL Suspension Systems
Steel

Figure 3: Process for Manufacturing Optima Ceiling Panels

Optima fiberglass substrate is formed by combining a binder with a fiberglass mat which is compressed and cured to form a board. Then Optima fiberglass ceiling panels are finished by laminating a scrim, painting, cutting to size, and adding edge details. After packaging, the material is shipped and installed. At the end of its useful life, the ceiling panel can then be recycled, sent to a landfill, or incinerated. Recycled ceilings can be returned to Armstrong as part of our recycling process.
4.0 Material Content (continued)

Table 4: Material Content of Suspension Systems

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>FUNCTION</th>
<th>QUANTITY (PERCENT BY WEIGHT)</th>
<th>RECYCLED MINERAL RESOURCE</th>
<th>MINERAL RESOURCE</th>
<th>NON-RENEWABLE</th>
<th>RENEWABLE</th>
<th>ABUNDANT</th>
<th>RECYCLED MATERIAL</th>
<th>ORIGIN</th>
<th>TRANSPORTATION MODE</th>
<th>TRANSPORTATION MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Dipped Galvanized Steel</td>
<td>Suspension</td>
<td>&gt;98%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Global</td>
<td>Truck</td>
<td>500-600</td>
</tr>
<tr>
<td>Paint</td>
<td>Finish</td>
<td>&lt;2%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>U.S.</td>
<td>Truck/Rail</td>
<td>200-500</td>
</tr>
</tbody>
</table>

Table 5: Representative Suspension System for which Life Cycle Assessment Data was Compiled

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>ITEMS</th>
<th>MANUFACTURING LOCATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelude XL*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Beam</td>
<td>7300 / 7301</td>
<td>Aberdeen, MD; Benton Harbor, MI; and Las Vegas, NV</td>
</tr>
<tr>
<td>Cross Tee 4’</td>
<td>XL7348 / XL7343 / XL7341</td>
<td></td>
</tr>
<tr>
<td>Cross Tee 2’</td>
<td>XL7328 / XL8320</td>
<td></td>
</tr>
<tr>
<td>Molding</td>
<td>7800</td>
<td></td>
</tr>
<tr>
<td>Hanger Wire</td>
<td>7891</td>
<td></td>
</tr>
</tbody>
</table>

* Prelude XL LCA data is representative of Suprafine XL, Silhouette XL, and Interlude XL Suspension Systems

4.3 Production of Suspension System

Figure 4: Process for Manufacturing Steel Suspension Systems

Armstrong suspension systems use hot dipped galvanized steel which is formed into coils. A large component of the steel is recycled material. The coils are split and painted, and then sent to Armstrong. At the Armstrong plant, the steel is pressed, roll formed, punched, and packaged. The material is then shipped and installed. When the system is disassembled, the majority of the steel is recycled.
4.4 Health, Safety, and Environmental Aspects During Production

Armstrong has a comprehensive environmental, health, and safety management program. Risk reduction begins in the product design process. All products go through a safety, health, and environmental review prior to sale. Armstrong also has a long-standing commitment to the safety and health of all our employees. The company’s safety management program is considered to be World Class. Our OSHA recordable incident rate is below 1.0, meaning that there is less than one injury per 100 employees per year. All employees view safety as a key responsibility of their jobs. In 2010, Armstrong was named one of “America’s Safest Companies” by EHS Today.

Armstrong is equally committed to reducing our environmental impact. As with safety goals, each manufacturing facility has annual environmental plans, tailored to meet goals on energy, water, and waste reduction. Armstrong is a registered member with The Climate Registry. This means the company gets third-party verification of our global greenhouse gas (GHG) inventories, which are then made publicly available. As part of this effort, the cumulative energy usage by our facilities is reported in the Armstrong Climate Registry certification.

5.0 Installation of Ceiling Systems

5.1 Installation and In-use Condition Recommendations

The ceiling system must be installed in accordance with Armstrong installation guidelines. Our ceiling system installation brochure, “Installing Suspended Ceilings,” is a general application overview, covering essential steps of a basic suspended ceiling installation. You can reference this document at http://www.armstrong.com/common/c2002/content/files/15994.pdf.

Optima ceiling panels are HumiGuard® Plus – offering superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications.

5.2 Health, Safety, and Environmental Aspects During Installation

There are no recognized systemic hazards associated with installing ceiling panels. Armstrong recommends that installers handle materials in a manner to minimize airborne dust. Installers should wear appropriate personal protective equipment, such as gloves and safety glasses, to minimize exposure to dust and the potential for skin irritation.

5.3 Waste

Installation waste is minimized by the modular aspect of the ceiling panel system. A conservative 7% waste factor was assumed on-site during construction. This value is based on historic internal studies which have documented the quantity of scrap that is generated at the job site due to needed border cuts, penetrations, or installer mistakes. While this material can be and is recycled from some jobs, in this case, it is assumed that all of the on-site scrap material will be sent to a landfill located within 50 miles of the job site.

Only 0.5% of a suspension system including hanger wire is scrapped or wasted at the job site during installation.

5.4 Packaging

Armstrong ceiling panels are well packaged in a variety of recyclable corrugated sleeves and box styles. Wooden pallets are used to protect unit loads during shipping.
6.0 Use Stage

The system is warranted for 30 years of use; however, ceiling panels can last as long as the building’s useful life if properly installed and maintained. The useful life indicated in the PCR for ceiling panels is 50 years. Warranty details can be found at http://www.armstrong.com/commceilingsna/article22553.html.

6.1 Cleaning and Maintenance

Cleaning instructions for Optima ceilings can be found at http://www.armstrong.com/commceilingsna/article21339.html.

7.0 Extraordinary Effects

7.1 Fire Performance

ASTM E84 and CAN/ULC S102 surface burning characteristics. Flame Spread Index 25 or less. Smoke Developed Index 50 or less. (UL labeled)

7.2 Sag Resistance

HumiGuard® Plus offers superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications and carries a 30-year limited system warranty.

7.3 Insulation Value

All Optima Items – 1” Tegular
R Factor – 4.0 (BTU units)
R Factor – 0.70 (Watts units)

7.4 Seismic Performance

Seismic Categories C, D, E, and F
ICC-ES ESR-1308 – see www.armstrong.com/seismicRX

7.5 Acoustical Panel Classification

ASTM E1264 - Standard Classification for Acoustical Ceiling Products
Type XII, Form 2, Pattern E, Fire Class A
8.0 End of Life Stage

8.1 Recycling or Reuse

The preferred method for a ceiling panel is to be recycled through the Armstrong Ceiling Recycling Program. Contact our Recycling Center at 1 877 276 7876 (press option 1, then 8), or visit www.armstrong.com/ceilingrecycling. Armstrong started reclaiming and recycling ceiling panels in 1997. Through 2011, Armstrong has recycled 116,128,000 square feet of ceiling panels into new ceiling panels.

8.2 Disposal

Disposal in municipal landfill or commercial incineration facilities is permissible and should be done in accordance with local, state, and federal regulations.

9.0 Life Cycle Assessment

This study provides life cycle inventory and environmental impacts relevant to Armstrong suspended ceiling systems. This LCA was conducted to 1) better understand the environmental impacts of the life cycle of suspended ceiling systems; 2) learn how the impacts of raw material selection, product formulation, and manufacturing process influence the life cycle impacts of suspended ceiling systems, and 3) use innovation to drive reduction in the product platform.

The methods for conducting the life cycle assessments used for this project were consistent with ISO 14040 and 14044. This report is intended to fulfill the reporting requirements in Section 5 of ISO 14040 and Part 2 of the Product Category Rules for Ceiling Panels for Suspended Ceiling Systems.

9.1 Information on the Product System Definition and Modeling of the Life Cycle

The declared unit for this EPD is 1 ft² of Optima ceiling panel for use over 50 years.

The data reported in this EPD is for Optima 1" tegular items. Items with a square edge and/or a 3/4" thickness resulted in lower LCA impacts when the entire product line was assessed, therefore, this EPD reports the highest potential LCA impacts for this family.

Ceiling System View: In order to understand the complete view of a ceiling system, life cycle information is included for the total ceiling system based on the coverage of a 1,000 square foot (ft²) area of building space and then broken down into a 1 square foot (ft²) view. This includes both the ceiling panels and the suspension system (Table 6). Table 5 details the representative suspension system for which the LCA data was compiled.
9.0 Life Cycle Assessment (continued)

System Boundaries:
The system boundaries studied as part of this life cycle assessment include extraction of primary materials, raw materials manufacture, ceiling panel production, installation, and end of life.

The phases below outline a “cradle-to-grave” life cycle assessment for ceiling panels (Figure 5), and suspension systems (Figure 6).

Figure 5. Life cycle phases included for the mineral fiber ceiling panels in study:

- Raw Material for Production
- Ceiling Panel Production
- Packaging
- Installation Phase
- Use Phase
- End of Life

Figure 6. Life cycle phases included for the steel suspension system in study:

- Raw Material for Production
- Hot Dipped Galvanized Steel Coil
- Coils are Painted & Split
- Coils Split
- Suspension Pressed, Formed & Packaged
- Use Phase
- End of Life
- Recycled Scrap

As Shown in Figures 5 and 6, the Cradle-to-Grave Assessment Includes:
- Raw materials production including substrate, coating, and packaging materials for ceiling panels and hot dipped galvanized steel master coil production, forming, and packaging for suspension systems
- Transportation of raw materials to Armstrong manufacturing facility
- Manufacturing of the ceiling panels and suspension system at an Armstrong manufacturing facility
- Packaging of finished products including energy to operate packaging equipment
- Transportation from manufacturing facility to distribution centers, retailers, and job site (assumed to be 500 miles by truck)
- Use phase covers a useful life of 50 years as suggested in the PCR and includes the transportation and installation of the system
- End of life includes landfill disposal of ceiling panels with assumed 50 miles truck transport from job site to landfill

The Cradle-to-Grave Assessment Excludes:
- Overhead energy usage (heating, lighting) of manufacturing facilities
- Maintenance and operation of support equipment
9.0 Life Cycle Assessment (continued)

Assumptions:

Armstrong World Industries began conducting life cycle assessments in 2006 and completed a baseline LCA of key products in 2007. Once the product life cycle impacts were understood, Armstrong began making changes to reduce life cycle impacts, such as global warming potential and primary energy demand. The reductions are outlined in Section 9.3.

All data is reported as a North American weighted average across our ceiling and suspension system plant locations. The majority of Armstrong ceiling products are distributed within 500 miles of the respective manufacturing plants. The same distribution trucks that take material to distribution centers backhaul post-consumer recycled ceiling panels to the manufacturing plants as part of our closed loop reclamation program. If product is not recycled, disposal transportation at end of life is assumed to be 50 miles.

This map shows the location of Armstrong manufacturing facilities with a circle denoting a 500-mile radius from each location.

Transportation emissions and fuels throughout the life cycle phases are included. All transportation associated with raw materials reflects the actual modes of transportation and mileage with the exception of recycled ceilings which assumes a transportation distance of 500 miles by truck.

Cutoff Criteria:

The cutoff criteria for the study are as follows:

■ Mass – If a flow is less than 1% of the cumulative mass of the model, it is excluded, providing its environmental relevance is not a concern.

■ Energy – If a flow is less than 1% of the cumulative energy of the model, it is excluded, providing its environmental relevance is not a concern.

■ Environmental relevance – If a flow meets the above criteria for exclusion, yet is believed to potentially have a significant environmental impact, it is included.

Data Quality:

Data for the fiberglass substrate was provided by the supplier. This data is believed to be of high quality and is consistent with industry data for fiberglass. The LCA model was created using the GaBi 5 Software system for life cycle engineering, developed by PE INTERNATIONAL GmbH. The GaBi database provides the life cycle inventory data for several of the raw and process materials obtained from the background system. The data quality is considered to be good to high quality. With the exception of supplier specific data, all other relevant background data was taken from the GaBi database software.

All gate-to-gate, primary foreground data was collected for the ceiling panels manufacturing process. Background data was collected from suppliers or generic data was used. When generic data was used, it was verified and triangulated against several sources.

Allocation:

No allocation was performed within the modeling of Armstrong unit processes for Optima fiberglass ceiling panels. Allocation occurred at the end of life phase for ceiling panels as they were partitioned based on 1% overall ceiling panel recycling rate. Credits for electricity and heat gained from thermal recycling of waste and packaging in a solid waste incinerator and/or landfill were not taken in this study.

Steel scrap generated during the manufacture of suspension systems was considered a valuable co-product and was addressed with system expansion. To be consistent with the WorldSteel dataset, the scrap steel from the manufacturing process and the steel suspension system at the end of life was given a credit based on the “Value of Steel” model (Avery, 2009). Also, allocation occurred at the end of life phase for ceiling panels as they were partitioned based on 1% overall ceiling panel recycling rate. Credits for electricity and heat gained from thermal recycling of waste and packaging in a solid waste incinerator and/or landfill were not taken in this study.
9.0 Life Cycle Assessment (continued)

9.2 Results of the Life Cycle Assessment

The LCA results are documented separately for the following stages:

1. Production
2. Use
3. End of Life

Table 6 shows the results for one declared unit of ceiling panel along with the potential impacts for the total ceiling system.

Table 6: LCA Detail by Life Cycle Stage for One Declared Unit of the Ceiling System Including 1 ft² of Optima Ceiling Panels and 1 ft² of Prelude XL Suspension System in a 2’ x 2’ Module, for Use over 50 years¹,²

<table>
<thead>
<tr>
<th>IMPACT MEASURE</th>
<th>PRODUCTION</th>
<th>USE PHASE</th>
<th>END OF LIFE</th>
<th>TOTAL OPTIMA CEILING PANEL ONLY</th>
<th>TOTAL PRELUDE XL SUSPENSION SYSTEM ONLY</th>
<th>TOTAL OPTIMA CEILING PANEL + PRELUDE XL SUSPENSION SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy (MJ)</td>
<td>10.0</td>
<td>2.8</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Global Warming Potential (kg CO₂ equivalent)</td>
<td>0.56</td>
<td>0.22</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ozone Depletion (kg CFC-11 equivalent)</td>
<td>2.60E-08</td>
<td>2.56E-09</td>
<td>2.56E-16</td>
<td>4.10E-10</td>
<td>4.30E-11</td>
<td>2.48E-10</td>
</tr>
<tr>
<td>Aciddification Potential (H⁺ moles equivalent)</td>
<td>0.204</td>
<td>0.040</td>
<td>0.004</td>
<td>0.000</td>
<td>0.005</td>
<td>0.000</td>
</tr>
<tr>
<td>Eutrophication Potential (kg PO₄ equivalent)</td>
<td>2.31E-04</td>
<td>3.30E-05</td>
<td>4.80E-06</td>
<td>6.53E-06</td>
<td>6.36E-06</td>
<td>2.83E-06</td>
</tr>
<tr>
<td>Smog – Photochemical Oxidant Creation Potential (kg O₃-Equiv.)</td>
<td>0.032</td>
<td>0.009</td>
<td>0.002</td>
<td>0.001</td>
<td>0.003</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure 7: Life Cycle Impact Assessment of Optima Ceiling Panels¹,²

Figure 7 shows the relative importance in percentage terms for the Production, Use, and End of Life stages for the ceiling panel.

---

¹ Based on U.S. EPA TRACI 2.0 Impact Factors
² Data is from Optima 1" Regular items. Items with a square edge, and items with a 3/4" thickness will have lower LCA impacts.
9.0 Life Cycle Assessment (continued)

Figure 8 shows the sources of primary energy separated into non-renewable and renewable resources. Figures 9 and 10 show the contribution of different resources to renewable and non-renewable primary energy. All figures refer to energy sources used to manufacture Optima ceiling panels in 2011.

Figure 8: Sources of Primary Energy

Figure 9: Renewable Energy by Source

Figure 10: Non-Renewable Energy by Source
9.0 Life Cycle Assessment (continued)

Waste and Water Consumption

The waste shown in Table 7 accounts for the waste generated at Armstrong manufacturing facilities (“Production”), and represents the waste associated with 1” tegular items. The “Use” phase waste accounts for the disposal of the packaging and scrap materials generated during installation; the quantity of ceiling tiles disposed of following removal from a building is shown in the “End of Life” phase. These waste values do not include the waste generated in the upstream processes. Other waste categories specified in the PCR were excluded due to data quality.

Table 7: Waste and Water Consumption for Optima Ceiling Panels (1 ft²)

<table>
<thead>
<tr>
<th></th>
<th>PRODUCTION</th>
<th>USE</th>
<th>END OF LIFE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-hazardous Waste (lbs/ft²)</td>
<td>0.11</td>
<td>0.07¹</td>
<td>0.49</td>
<td>0.67</td>
</tr>
<tr>
<td>Water Consumption (gal/ft²) ²</td>
<td>0.10</td>
<td>0.01</td>
<td>0.00</td>
<td>0.11</td>
</tr>
</tbody>
</table>

¹ Water consumption = water use (without rainwater) - water released back to the watershed
² Does not include production of fiberglass substrate

9.3 Life Cycle Impact Reduction

Armstrong products have a demonstrated reduction in primary energy demand from 2007 to 2011. Figure 11 shows the reduction in LCA impacts in percent terms, based on 2007 production compared to 2011 for Optima:

Figure 11: Reduction in Optima from 2007 to 2011
9.0 Life Cycle Assessment (continued)

9.4 Interpretation of Life Cycle Assessment

From the results of the suspended ceiling system life cycle covered in this study, it was concluded that the ceiling panel manufacturing process and raw materials – specifically, fiberglass substrate and scrim in the ceiling panel and steel in the suspension systems – have the greatest impact on Primary Energy Demand (PED) and “carbon footprint” (represented by Global Warming Potential [GWP]).

9.5 Ceiling Panel Impacts

As shown in Table 6 on page 13, the majority of the environmental impacts for this product occur during the extraction and processing of raw materials detailed in the Production Stage. For most ceiling panels, the opportunity for reduction is in the manufacturing process as well as reductions associated with raw materials. Recycled glass fibers used in the production process reduce raw material impacts by using less virgin raw materials.

9.6 Suspension System Impacts

As shown in Table 6 on page 13, the majority of the environmental impacts for the ceiling suspension systems occur during the production of the steel. Heavy-duty suspension system components have greater impacts than intermediate-duty suspension system components, because they contain more steel.

9.7 Use Stage

Although Armstrong provides a 30-year ceiling system warranty, the use stage is defined in the PCR at 50 years and this is what was used in the LCA. The assumption is that the ceiling system requires no cleaning or maintenance so the impact is very small.

9.8 End of Life Impacts

End of Life Impacts associated with landfilling and/or incineration of Optima ceiling panels range from 0.2% to 7.4% of all of the impact categories. For example, End of Life represented approximately 2.7% of the overall Global Warming Potential impacts for an Optima ceiling panel.

10.0 Additional Information, Evidence, Test Certificates

10.1 Biopersistence of Glass Fibers

Glass fibers have been classified as “not classifiable as to its carcinogenicity to humans” (Group 3) by the International Agency for Research on Cancer (IARC) as referenced in volume 81. The MSDS for this product can be found at http://www.armstrong.com/pdbupimages/190710.pdf.
11.0 References

11.1 PCR
Product Category Rules for Environmental Product Declarations – ceiling panels for suspended ceiling systems. Confirmed by IBU Advisory Board October 2010

11.2 Standards
EN ISO 14025:2006, Environmental labels and declarations – Type III – environmental declarations - Principles and procedures
ASTM E1264-08e1 Standard Classification for Acoustic Ceiling Products
ASTM E84-12 Standard Test Method for Surface Burning Characteristics of Building Materials
ASTM C636 / C636M-08 Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels
ASTM C423-09a Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method
ASTM E1414 / E1414M-11a Standard Test Method for Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum
ASTM E1110-06 (2011) Standard Classification for Determination of Articulation Class

12.0 Third Party Evaluations

- UL Classified Acoustics
- ICC-ES recognizes Armstrong Seismic Rx® Suspension System as a code compliant solution (ESR-1308)
- Climate Registry certification of our greenhouse gas (GHG) inventories
- Flame Spread Rating (ASTM E84) – Class A

13.0 Quality Assurance
Armstrong has a robust internal Quality Assurance process that is based on industry-accepted best practices and is led by a team of quality professionals who have been certified by the American Society for Quality. The process involves several hundred different measures made throughout the manufacturing processes. In addition, our products are UL labeled for fire and acoustical performance, a process which involves strict oversight by Underwriters Laboratories. The Armstrong acoustical laboratory is ISO 17025 certified and is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).
### 14.0 References

Table 8: Life Cycle Impact Assessment Categories, Indicators of Contribution to Environmental Issues, Units of Measure, and Brief Descriptions

<table>
<thead>
<tr>
<th>IMPACT CATEGORY</th>
<th>INDICATOR</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidification</td>
<td>Acidification Potential (AP)</td>
<td>A measure of emissions that cause acidifying effects to the environment. The acidification potential is assigned by relating the existing S(^\text{2}), N(^\text{3}), and halogen atoms to the molecular weight.</td>
<td>mol H(^+) equivalent</td>
<td>J. Bare, TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0, 2011.</td>
</tr>
<tr>
<td>Climate Change</td>
<td>Global Warming Potential (GWP)</td>
<td>A measure of greenhouse gas emissions, such as CO(_2) and methane. These emissions are causing an increase in the absorption of radiation emitted by the earth, magnifying the natural greenhouse effect.</td>
<td>kg CO(_2) equivalent</td>
<td>Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories 2006.</td>
</tr>
<tr>
<td></td>
<td>Eutrophication Potential (EP)</td>
<td>An indicator of the potential to cause an increase in biomass production. In water, this can lead to algal blooms resulting in oxygen depletion that affects higher species such as fish. Undesirable shifts in numbers of species can also occur, resulting in a threat to biodiversity.</td>
<td>kg Nitrogen equivalent</td>
<td>J. Bare, TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0, 2011.</td>
</tr>
<tr>
<td>Ozone Creation</td>
<td>Photochemical Oxidant Potential (POCP)/Smog Potential</td>
<td>A measure of emissions of precursors that contribute to low level smog, produced by the reaction of nitrogen oxides and VOC’s under the influence of UV light.</td>
<td>kg NO(_x) equivalent</td>
<td>J. Bare, TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0, 2011.</td>
</tr>
<tr>
<td></td>
<td>Primary Energy Demand</td>
<td>A measure of the total amount of primary energy extracted from the earth. PED is expressed in energy demand from non-renewable resources (e.g., petroleum, natural gas, etc.) and energy demand from renewable resources (e.g., hydropower, wind energy, solar, etc.). Efficiencies in energy conversion (e.g., power, heat, steam, etc.) are taken into account.</td>
<td>MJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Consumed</td>
<td>Water consumption is the sum of all water inputs to the life cycle. Includes water required for production of raw materials, upstream datasets, and manufacturing processes. Does not capture the end of life of the water consumed.</td>
<td>gal/ft(^2)</td>
<td></td>
</tr>
<tr>
<td>Waste Disposed</td>
<td>Waste disposed is the sum of all waste outputs from the life cycle. This includes hazardous and non-hazardous wastes and does not capture end of life of the waste generated.</td>
<td>lbs/ft(^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 14.1 Definitions

GaBi 5.0 – LCA Modeling Software

TRACI 2.0 – (Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts) is an impact assessment tool developed by EPA for Sustainability Metrics, Life Cycle Assessment, Industrial Ecology, Process Design, and Pollution Prevention. The impact categories in TRACI include acidification, ecotoxicity, eutrophication, fossil fuel depletion, global warming, human health cancer, human health criteria, human health non-cancer, ozone depletion, and smog formation. The categories were selected based on their level of commonality with existing literature in this area, consistency with EPA regulations and policies, current state of development, and perceived societal value. TRACI was developed specifically for the U.S. using input parameters consistent with U.S. locations.